littlebiglogicengine/src/main.zig

465 lines
16 KiB
Zig
Raw Normal View History

2025-02-11 07:55:25 -07:00
const std = @import("std");
pub fn main() !void {
2025-02-12 04:52:27 -07:00
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = gpa.allocator();
2025-03-03 18:38:36 -07:00
var input = Signal{ .digital = 1, .analog = 0.5 };
2025-02-11 16:28:27 -07:00
2025-02-12 05:46:49 -07:00
var circuit = Circuit.init(allocator);
defer circuit.deinit();
2025-03-03 18:38:36 -07:00
var not1 = try circuit.addComponent(Not);
not1.invert_output = false;
not1.component.inputs.items[0] = .{ .signal = &input }; // manually set the input here
var battery1 = try circuit.addComponent(Battery);
var battery2 = try circuit.addComponent(Battery);
var battery3 = try circuit.addComponent(Battery);
battery1.value = -0.5;
battery2.value = 0.5;
battery3.value = -1.0;
var or1 = try circuit.addComponent(Or);
var or2 = try circuit.addComponent(Or);
or1.arithmetic_mode = true;
or2.arithmetic_mode = true;
try or1.component.resizeInputs(allocator, 3);
try or2.component.resizeInputs(allocator, 3);
var or3 = try circuit.addComponent(Or);
var or4 = try circuit.addComponent(Or);
var or5 = try circuit.addComponent(Or);
var or6 = try circuit.addComponent(Or);
var or7 = try circuit.addComponent(Or);
var or8 = try circuit.addComponent(Or);
var and1 = try circuit.addComponent(And);
var and2 = try circuit.addComponent(And);
or6.arithmetic_mode = true;
or7.arithmetic_mode = true;
or8.arithmetic_mode = true;
and1.arithmetic_mode = true;
and2.arithmetic_mode = true;
battery1.component.connect(0, &or3.component, 1);
battery1.component.connect(0, &or4.component, 1);
battery1.component.connect(0, &or5.component, 1);
battery2.component.connect(0, &or6.component, 0);
battery2.component.connect(0, &or7.component, 0);
battery2.component.connect(0, &or8.component, 0);
battery3.component.connect(0, &and1.component, 0);
battery3.component.connect(0, &and2.component, 0);
not1.component.connect(0, &or3.component, 0);
not1.component.connect(0, &or1.component, 0);
not1.component.connect(0, &or1.component, 1);
or1.component.connect(0, &or4.component, 0);
or1.component.connect(0, &or2.component, 0);
or1.component.connect(0, &or2.component, 1);
or2.component.connect(0, &or5.component, 0);
or3.component.connect(0, &or6.component, 1);
or4.component.connect(0, &or7.component, 1);
or5.component.connect(0, &or8.component, 1);
or6.component.connect(0, &and1.component, 1);
and1.component.connect(0, &or1.component, 2);
or7.component.connect(0, &and2.component, 1);
and2.component.connect(0, &or2.component, 2);
2025-02-12 04:52:27 -07:00
2025-02-12 16:16:47 -07:00
try circuit.tick();
// battery1.component.process();
// battery2.component.process();
// battery3.component.process();
// not1.component.process();
// or3.component.process();
// or6.component.process();
// and1.component.process();
// or1.component.process();
// or4.component.process();
// or7.component.process();
// and2.component.process();
// or2.component.process();
// or5.component.process();
// or8.component.process();
// std.debug.print("Input:\n{}\n\n", .{input});
// std.debug.print("{}\n{}\n\n", .{
// or1.component.outputs.items[0].signal,
// or2.component.outputs.items[0].signal,
// });
// std.debug.print("{}\n{}\n{}\n\n", .{
// or3.component.outputs.items[0].signal,
// or4.component.outputs.items[0].signal,
// or5.component.outputs.items[0].signal,
// });
// std.debug.print("{}\n{}\n{}\n{}\n{}\n\n", .{
// or6.component.outputs.items[0].signal,
// and1.component.outputs.items[0].signal,
// or7.component.outputs.items[0].signal,
// and2.component.outputs.items[0].signal,
// or8.component.outputs.items[0].signal,
// });
2025-02-11 07:55:25 -07:00
}
2025-02-12 05:46:49 -07:00
pub const Circuit = struct {
allocator: std.mem.Allocator,
components: Components,
2025-03-03 18:38:36 -07:00
source_components: Components,
2025-02-12 05:46:49 -07:00
pub fn init(allocator: std.mem.Allocator) Circuit {
return .{
.allocator = allocator,
.components = Components.empty,
2025-03-03 18:38:36 -07:00
.source_components = Components.empty,
2025-02-12 05:46:49 -07:00
};
}
pub fn deinit(self: *Circuit) void {
self.source_components.deinit(self.allocator);
for (0..self.components.items.len) |i| self.components.items[i].deinit(self.allocator);
self.components.deinit(self.allocator);
}
2025-03-03 18:38:36 -07:00
pub fn addComponent(self: *Circuit, comptime T: type) !T {
var c = try T.init(self.allocator);
errdefer c.deinit(self.allocator);
try self.components.append(self.allocator, &c.component);
if (T == Battery) try self.source_components.append(self.allocator, &c.component);
return c;
}
2025-02-12 05:46:49 -07:00
2025-02-12 16:16:47 -07:00
pub fn tick(self: *Circuit) !void {
var process_order_solver = try ProcessOrderSolver.init(self);
defer process_order_solver.deinit();
const process_order = process_order_solver.solve();
_ = process_order;
}
2025-03-03 18:38:36 -07:00
const Components = std.ArrayListUnmanaged(*Component);
2025-02-12 16:16:47 -07:00
const ProcessOrder = []*Component;
const ProcessOrderSolver = struct {
circuit: *Circuit,
solved: []bool,
pub fn init(circuit: *Circuit) !ProcessOrderSolver {
return .{
.circuit = circuit,
.solved = try circuit.allocator.alloc(bool, circuit.components.items.len),
};
}
pub fn deinit(self: *ProcessOrderSolver) void {
self.circuit.allocator.free(self.solved);
}
pub fn solve(self: *ProcessOrderSolver) ProcessOrder {
for (self.circuit.source_components.items) |source_component| {
var component = source_component;
// while (true) blk: {
// component.process();
2025-02-13 03:39:56 -07:00
// std.debug.print("source component {any}\n\n", .{source_component});
const idx = self.componentIndex(component);
self.solved[idx.?] = true;
2025-02-12 16:16:47 -07:00
std.debug.print("{any}\n", .{component});
2025-03-03 18:38:36 -07:00
component = component.outputs.items[0].connection.?;
2025-02-12 16:16:47 -07:00
// }
}
return &[_]*Component{};
}
fn componentIndex(self: ProcessOrderSolver, component: *Component) ?usize {
2025-03-03 18:38:36 -07:00
// for (self.circuit.components.items, 0..) |c, i| {
// // std.debug.print("{any} == {any}\n", .{ component, &c });
// std.debug.print("{*} == {*}\n", .{ component, &c });
// // std.debug.print("{s}\n{s}\n{any}\n\n", .{
// // std.fmt.fmtSliceHexLower(std.mem.asBytes(component)),
// // std.fmt.fmtSliceHexLower(std.mem.asBytes(&c)),
// // std.mem.eql(u8, std.mem.asBytes(component), std.mem.asBytes(&c)),
// // });
// // if (std.mem.eql(u8, std.mem.asBytes(component), std.mem.asBytes(&c))) {
// if (component == c) {
// return i;
// }
// }
// return null;
return std.mem.indexOfScalar(*Component, self.circuit.components.items, component);
2025-02-12 16:16:47 -07:00
}
};
2025-02-12 05:46:49 -07:00
};
2025-02-12 04:52:27 -07:00
var null_signal = Signal{};
pub const Component = struct {
inputs: Inputs,
outputs: Outputs,
processFn: *const fn (*Component) void,
pub fn init(allocator: std.mem.Allocator, inputs_len: usize, outputs_len: usize, processFn: *const fn (*Component) void) !Component {
var inputs = Inputs.empty;
errdefer inputs.deinit(allocator);
try inputs.resize(allocator, inputs_len);
2025-02-12 16:16:47 -07:00
for (0..inputs.items.len) |i| inputs.items[i] = .{};
2025-02-12 04:52:27 -07:00
var outputs = Outputs.empty;
errdefer outputs.deinit(allocator);
try outputs.resize(allocator, outputs_len);
2025-02-12 16:16:47 -07:00
for (0..outputs.items.len) |i| outputs.items[i] = .{};
2025-02-12 04:52:27 -07:00
return .{
.inputs = inputs,
.outputs = outputs,
.processFn = processFn,
};
}
pub fn deinit(self: *Component, allocator: std.mem.Allocator) void {
self.inputs.deinit(allocator);
self.outputs.deinit(allocator);
}
pub fn process(self: *Component) void {
self.processFn(self);
}
// TODO allow inserting the new elements at an arbitrary index
2025-02-12 16:16:47 -07:00
// TODO ensure this won't break the opposide side's connections
2025-03-03 18:38:36 -07:00
pub fn resizeInputs(self: *Component, allocator: std.mem.Allocator, new_len: usize) !void {
2025-02-12 04:52:27 -07:00
const old_len = self.inputs.items.len;
try self.inputs.resize(allocator, new_len);
if (new_len > old_len) for (old_len..new_len) |i| {
2025-02-12 16:16:47 -07:00
self.inputs.items[i] = .{};
2025-02-12 04:52:27 -07:00
};
}
// TODO allow inserting the new elements at an arbitrary index
2025-02-12 16:16:47 -07:00
// TODO ensure this won't break the opposide side's connections
2025-03-03 18:38:36 -07:00
pub fn resizeOutputs(self: *Component, allocator: std.mem.Allocator, new_len: usize) !void {
2025-02-12 04:52:27 -07:00
const old_len = self.outputs.items.len;
try self.outputs.resize(allocator, new_len);
if (new_len > old_len) for (old_len..new_len) |i| {
2025-02-12 16:16:47 -07:00
self.outputs.items[i] = .{};
2025-02-12 04:52:27 -07:00
};
}
pub fn connect(self: *Component, self_idx: usize, to: *Component, to_idx: usize) void {
2025-02-12 16:16:47 -07:00
to.inputs.items[to_idx] = .{
.signal = &self.outputs.items[self_idx].signal,
.connection = self,
.idx = self_idx,
};
2025-02-12 04:52:27 -07:00
}
2025-02-12 16:16:47 -07:00
pub const Input = struct {
signal: *Signal = &null_signal,
connection: ?*Component = null,
idx: usize = 0,
};
pub const Output = struct {
signal: Signal = .{},
connection: ?*Component = null,
idx: usize = 0,
};
2025-02-12 04:52:27 -07:00
const Inputs = std.ArrayListUnmanaged(Input);
const Outputs = std.ArrayListUnmanaged(Output);
};
2025-02-11 13:46:37 -07:00
pub const Signal = struct {
digital: i2 = 0,
analog: f32 = 0.0,
color: u24 = 0,
pub fn format(
self: Signal,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = .{ fmt, options };
try writer.writeAll("Signal(");
if (self.digital < 0) try writer.writeByte('-') else try writer.writeByte('+');
try writer.print("{d} / {d:0>1.4})", .{
@abs(self.digital),
self.analog,
});
}
2025-02-11 11:22:34 -07:00
};
pub const Battery = struct {
2025-02-12 04:52:27 -07:00
component: Component,
value: f32 = 1.0,
2025-02-11 13:07:08 -07:00
2025-02-12 04:52:27 -07:00
pub fn init(allocator: std.mem.Allocator) !Battery {
return .{
.component = try Component.init(allocator, 0, 1, &process),
};
}
pub fn deinit(self: *Battery, allocator: std.mem.Allocator) void {
self.component.deinit(allocator);
}
2025-02-11 16:28:27 -07:00
2025-02-12 04:52:27 -07:00
pub fn process(component: *Component) void {
const self: *Battery = @fieldParentPtr("component", component);
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = @intFromFloat(std.math.sign(self.value));
component.outputs.items[0].signal.analog = self.value;
2025-02-11 13:07:08 -07:00
}
2025-02-11 08:14:55 -07:00
};
2025-02-11 13:46:37 -07:00
pub const Not = struct {
2025-02-12 04:52:27 -07:00
component: Component,
2025-02-11 11:43:39 -07:00
2025-02-11 13:46:37 -07:00
invert_output: bool = true,
2025-02-11 11:43:39 -07:00
2025-02-12 04:52:27 -07:00
pub fn init(allocator: std.mem.Allocator) !Not {
return .{
.component = try Component.init(allocator, 1, 1, &process),
};
}
pub fn deinit(self: *Not, allocator: std.mem.Allocator) void {
self.component.deinit(allocator);
}
pub fn process(component: *Component) void {
const self: *Not = @fieldParentPtr("component", component);
2025-02-11 13:46:37 -07:00
if (self.invert_output) {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = 1 - @as(i2, @intCast(@abs(component.inputs.items[0].signal.digital)));
component.outputs.items[0].signal.analog = 1.0 - @abs(component.inputs.items[0].signal.analog);
2025-02-11 13:46:37 -07:00
} else {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital;
component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog;
2025-02-11 13:46:37 -07:00
}
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0);
2025-02-11 13:46:37 -07:00
}
};
2025-02-11 11:43:39 -07:00
2025-02-11 16:28:27 -07:00
pub const And = struct {
2025-02-12 04:52:27 -07:00
component: Component,
2025-02-11 11:43:39 -07:00
2025-02-11 16:28:27 -07:00
// if false, is in Minimum Input mode
// if true, is in Multiply Inputs mode
arithmetic_mode: bool = false,
2025-02-12 04:52:27 -07:00
pub fn init(allocator: std.mem.Allocator) !And {
return .{
.component = try Component.init(allocator, 2, 1, &process),
};
}
pub fn deinit(self: *And, allocator: std.mem.Allocator) void {
self.component.deinit(allocator);
}
2025-02-11 16:28:27 -07:00
// TODO check implementation
2025-02-12 04:52:27 -07:00
pub fn process(component: *Component) void {
const self: *And = @fieldParentPtr("component", component);
2025-02-11 16:28:27 -07:00
if (self.arithmetic_mode) {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital;
component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog;
2025-02-12 04:52:27 -07:00
for (component.inputs.items[1..]) |input| {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = 0; // TODO
component.outputs.items[0].signal.analog *= input.signal.analog;
2025-02-11 16:28:27 -07:00
}
} else {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital;
component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog;
2025-02-12 04:52:27 -07:00
for (component.inputs.items[1..]) |input| {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = 0; // TODO
component.outputs.items[0].signal.analog = switch (std.math.order(@abs(component.outputs.items[0].signal.analog), @abs(input.signal.analog))) {
.lt => component.outputs.items[0].signal.analog,
.eq => @min(component.outputs.items[0].signal.analog, input.signal.analog), // TODO what does this *actually* do?
.gt => input.signal.analog,
2025-02-12 01:04:53 -07:00
};
2025-02-11 16:28:27 -07:00
}
}
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0);
2025-02-11 16:28:27 -07:00
}
};
2025-02-11 11:43:39 -07:00
2025-02-12 04:52:27 -07:00
// TODO update test to use new Component interface
2025-02-12 01:04:53 -07:00
test "min" {
var a = Signal{ .analog = 0.0 };
var b = Signal{ .analog = 1.0 };
var inputs = [_]*Signal{ &a, &b };
var and1 = And{ .inputs = &inputs };
and1.process();
try std.testing.expectEqual(0.0, and1.output.analog);
a.analog = -0.5;
b.analog = -0.2;
and1.process();
try std.testing.expectEqual(-0.2, and1.output.analog);
}
2025-02-11 16:28:27 -07:00
pub const Or = struct {
2025-02-12 04:52:27 -07:00
component: Component,
2025-02-11 11:43:39 -07:00
2025-02-11 16:28:27 -07:00
// if false, is in Maximum Input mode
// if true, is in Add Inputs mode
arithmetic_mode: bool = false,
2025-02-12 04:52:27 -07:00
pub fn init(allocator: std.mem.Allocator) !Or {
return .{
.component = try Component.init(allocator, 2, 1, &process),
};
}
pub fn deinit(self: *Or, allocator: std.mem.Allocator) void {
self.component.deinit(allocator);
}
2025-02-11 16:28:27 -07:00
// TODO check implementation
2025-02-12 04:52:27 -07:00
pub fn process(component: *Component) void {
const self: *Or = @fieldParentPtr("component", component);
2025-02-11 16:28:27 -07:00
if (self.arithmetic_mode) {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital;
component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog;
2025-02-12 04:52:27 -07:00
for (component.inputs.items[1..]) |input| {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = 0; // TODO
component.outputs.items[0].signal.analog += input.signal.analog;
2025-02-11 16:28:27 -07:00
}
} else {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital;
component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog;
2025-02-12 04:52:27 -07:00
for (component.inputs.items[1..]) |input| {
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.digital = 0; // TODO
component.outputs.items[0].signal.analog = switch (std.math.order(@abs(component.outputs.items[0].signal.analog), @abs(input.signal.analog))) {
.lt => input.signal.analog,
.eq => @max(component.outputs.items[0].signal.analog, input.signal.analog), // TODO what does this *actually* do?
.gt => component.outputs.items[0].signal.analog,
2025-02-12 01:04:53 -07:00
};
2025-02-11 16:28:27 -07:00
}
}
2025-02-12 16:16:47 -07:00
component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0);
2025-02-11 16:28:27 -07:00
}
};
2025-02-12 01:04:53 -07:00
2025-02-12 04:52:27 -07:00
// TODO update test to use new Component interface
2025-02-12 01:04:53 -07:00
test "max" {
var a = Signal{ .analog = 0.0 };
var b = Signal{ .analog = 1.0 };
var inputs = [_]*Signal{ &a, &b };
var or1 = Or{ .inputs = &inputs };
or1.process();
try std.testing.expectEqual(1.0, or1.output.analog);
a.analog = -0.5;
b.analog = -0.2;
or1.process();
try std.testing.expectEqual(-0.5, or1.output.analog);
}