rex/src/main.zig
2025-06-12 06:59:22 -06:00

894 lines
29 KiB
Zig

pub fn main() !void {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = gpa.allocator();
raylib.SetConfigFlags(raylib.FLAG_VSYNC_HINT | raylib.FLAG_WINDOW_RESIZABLE);
raylib.InitWindow(@intFromFloat(screen_width), @intFromFloat(screen_height), "ReX");
defer raylib.CloseWindow();
raylib.SetWindowMinSize(480, 272);
raylib.SetWindowMaxSize(1920, 1080);
scales = Scales.init();
datetime = DateTime{ .secs = @intCast(std.time.timestamp()) };
global_font = raylib.LoadFontEx("font/SCE-PS3-RD-R-LATIN.TTF", 32, 0, 250);
raylib.SetTextureFilter(global_font.texture, raylib.TEXTURE_FILTER_BILINEAR);
var background = Background.init();
var crossmenu = CrossMenu.init(allocator);
defer crossmenu.deinit();
const game_column = try crossmenu.appendColumn(.{
.icon = raylib.LoadTexture("icon-normal-3.png"),
.title = "Game",
});
try game_column.appendItem(.{
.icon = raylib.LoadTexture("menu/game/CometCrash/ICON0.PNG"),
.title = "Comet Crash",
.subtitle = "3/1/2025 23:11",
});
try game_column.appendItem(.{
.icon = raylib.LoadTexture("menu/game/LBP1/ICON0.PNG"),
.title = "LittleBigPlanet",
.subtitle = "3/1/2025 23:15",
});
icon_shader = raylib.LoadShaderFromMemory(0, @embedFile("shaders/icon.fs"));
defer raylib.UnloadShader(icon_shader);
const light_dir_loc = raylib.GetShaderLocation(icon_shader, "lightDir");
const light_color_loc = raylib.GetShaderLocation(icon_shader, "lightColor");
const ambient_color_loc = raylib.GetShaderLocation(icon_shader, "ambientColor");
const icon_mask = raylib.LoadTexture("icon-mask.png");
defer raylib.UnloadTexture(icon_mask);
const icon_normal = raylib.LoadTexture("icon-normal-2.png");
defer raylib.UnloadTexture(icon_normal);
raylib.SetShaderValue(icon_shader, light_dir_loc, &raylib.Vector3{ .x = 0.5, .y = 0, .z = 0 }, raylib.SHADER_UNIFORM_VEC3);
raylib.SetShaderValue(icon_shader, light_color_loc, &raylib.Vector4{ .x = 1, .y = 1, .z = 1, .w = 1.5 }, raylib.SHADER_UNIFORM_VEC4);
raylib.SetShaderValue(icon_shader, ambient_color_loc, &raylib.Vector4{ .x = 0.94, .y = 0.97, .z = 0.98, .w = 0.8 }, raylib.SHADER_UNIFORM_VEC4);
raylib.SetTargetFPS(120);
while (!raylib.WindowShouldClose()) {
if (raylib.IsWindowResized()) {
screen_width = @floatFromInt(raylib.GetScreenWidth());
screen_height = @floatFromInt(raylib.GetScreenHeight());
scales.recalculate();
crossmenu.refresh(false);
}
if (raylib.IsKeyPressed('D')) debug_draw = !debug_draw;
if (raylib.IsKeyPressed('S')) raylib.TakeScreenshot("screenshot.png");
datetime.update();
background.update();
crossmenu.update();
raylib.BeginDrawing();
defer raylib.EndDrawing();
background.draw();
crossmenu.draw();
if (debug_draw) {
drawDebugGrid();
const debug_text = try std.fmt.allocPrint(allocator,
\\screen size = {d}x{d}
, .{
screen_width,
screen_height,
});
defer allocator.free(debug_text);
raylib.DrawText(@ptrCast(debug_text), 2, 2, 8, raylib.GREEN);
}
}
}
var debug_draw = false;
var global_font: raylib.Font = undefined;
var icon_shader: raylib.Shader = undefined;
var screen_width: f32 = 480;
var screen_height: f32 = 272;
var scales: Scales = undefined;
var datetime: DateTime = undefined;
/// Cached scaling and positioning values for dynamic window resizing.
pub const Scales = struct {
font_size_curve: Curve,
icon_size_curve: Curve,
icon_height: f32,
icon_width: f32,
item_title_font_size: f32,
item_subtitle_font_size: f32,
column_icon_padding_top_curve: Curve,
column_item_spacing_curve: Curve,
column_selected_item_icon_scale_curve: Curve,
column_title_font_size: f32,
column_position_center: raylib.Vector2,
column_position_spacing: f32,
column_item_spacing: f32,
column_selected_item_icon_scale: f32,
column_icon_padding_top: f32,
column_item_after_start: f32,
column_item_before_start: f32,
pub fn init() Scales {
var self: Scales = undefined;
self.font_size_curve = Curve{ .points = &[_]Curve.Point{
.{ .x = 0, .y = 18 },
.{ .x = 0.25, .y = 18 },
.{ .x = 1, .y = 26 },
} };
self.icon_size_curve = Curve{ .points = &[_]Curve.Point{
.{ .x = 0, .y = 48 },
.{ .x = 1, .y = 80 },
} };
self.column_icon_padding_top_curve = Curve{ .points = &[_]Curve.Point{
.{ .x = 0, .y = 0 },
.{ .x = 0.25, .y = 0 },
.{ .x = 1, .y = 16 },
} };
self.column_item_spacing_curve = Curve{ .points = &[_]Curve.Point{
.{ .x = 0, .y = 10, .right_tangent = -90 },
.{ .x = 0.25, .y = 0 },
.{ .x = 1, .y = 0 },
} };
self.column_selected_item_icon_scale_curve = Curve{
.points = &[_]Curve.Point{
.{ .x = 0, .y = 1 },
.{ .x = 0.25, .y = 1.5 },
.{ .x = 1, .y = 2 },
},
};
self.recalculate();
return self;
}
/// Recalculate scales after screen resize.
pub fn recalculate(self: *Scales) void {
const height = raylib.Remap(screen_height, 272, 1080, 0, 1);
const font_size = self.font_size_curve.sample(height);
const icon_size = self.icon_size_curve.sample(height);
self.icon_height = icon_size;
self.icon_width = icon_size * 1.395833;
self.item_title_font_size = font_size;
self.item_subtitle_font_size = font_size * 0.666667;
self.column_title_font_size = font_size * 0.722222;
self.column_position_center = .{
.x = std.math.lerp(0.0, screen_width, 0.18),
.y = std.math.lerp(0.0, screen_height, 0.15),
};
self.column_position_spacing = 64;
self.column_item_spacing = self.column_item_spacing_curve.sample(height);
self.column_selected_item_icon_scale = self.column_selected_item_icon_scale_curve.sample(height);
self.column_icon_padding_top = self.column_icon_padding_top_curve.sample(height);
self.column_item_after_start = self.column_position_center.y + self.icon_height + self.column_title_font_size + 12;
self.column_item_before_start = self.column_position_center.y - self.column_icon_padding_top;
}
};
var debug_colors: DebugColors = .{};
pub const DebugColors = struct {
screen_grid_color: raylib.Color = .{ .r = 200, .g = 220, .b = 200, .a = 32 },
screen_text_color: raylib.Color = .{ .r = 255, .g = 255, .b = 255, .a = 90 },
};
fn drawDebugColorLegend() void {
const list = [_]struct {}{};
var y: c_int = @intFromFloat(screen_height);
for (list) |item| {
_ = item;
_ = &y;
}
}
fn drawDebugGrid() void {
const height: c_int = @intFromFloat(screen_height);
const width: c_int = @intFromFloat(screen_width);
var x: c_int = 0;
while (x < width) : (x += 25) raylib.DrawLine(x, 0, x, height, debug_colors.screen_grid_color);
var y: c_int = 0;
while (y < height) : (y += 25) raylib.DrawLine(0, y, width, y, debug_colors.screen_grid_color);
x = 100;
while (x < width) : (x += 100) {
var buf: [8]u8 = undefined;
const text = std.fmt.bufPrint(&buf, "{d}", .{x}) catch unreachable;
buf[text.len] = 0;
raylib.DrawText(@ptrCast(text), x + 1, height - 15, 10, debug_colors.screen_text_color);
const size = raylib.MeasureText(@ptrCast(text), 10);
raylib.DrawText(@ptrCast(text), width - 15 - size, x, 10, debug_colors.screen_text_color);
}
}
pub const CrossMenu = struct {
allocator: Allocator,
columns: std.ArrayListUnmanaged(Column) = .empty,
selected: usize = 0,
pub fn init(allocator: Allocator) CrossMenu {
return .{ .allocator = allocator };
}
pub fn deinit(self: *CrossMenu) void {
for (self.columns.items) |*column| column.deinit();
self.columns.deinit(self.allocator);
}
pub fn refresh(self: *CrossMenu, comptime animate: bool) void {
for (self.columns.items) |*column| column.refresh(animate);
}
pub fn update(self: *CrossMenu) void {
for (self.columns.items) |*column| column.update();
}
pub fn draw(self: *CrossMenu) void {
for (self.columns.items) |*column| column.draw();
}
pub fn appendColumn(self: *CrossMenu, options: Column.Options) !*Column {
const column = try self.columns.addOne(self.allocator);
column.* = Column.init(self.allocator, options);
return column;
}
};
// TODO item actions
// TODO item groups
// TODO item group sort
pub const Column = struct {
items: std.ArrayList(Item),
selected: usize = 0,
icon: Image,
title: Text,
pub const Options = struct {
icon: raylib.Texture2D,
title: []const u8,
};
pub fn init(allocator: Allocator, options: Options) Column {
raylib.SetTextureFilter(options.icon, raylib.TEXTURE_FILTER_BILINEAR);
raylib.SetTextureWrap(options.icon, raylib.TEXTURE_WRAP_CLAMP);
return .{
.items = .init(allocator),
.icon = .{
.texture = options.icon,
.is_normal_map = true,
},
.title = .{
.string = options.title,
.align_h = .center,
},
};
}
pub fn deinit(self: *Column) void {
self.items.deinit();
}
pub fn draw(self: *Column) void {
self.icon.box = .{
.x = scales.column_position_center.x,
.y = scales.column_position_center.y,
.w = scales.icon_width,
.h = scales.icon_height,
};
self.title.font_size = scales.column_title_font_size;
self.title.box = .{
.x = self.icon.box.x - 8,
.y = self.icon.box.y + self.icon.box.h + 6,
.w = self.icon.box.w + 16,
.h = scales.column_title_font_size,
};
for (self.items.items) |*item| item.draw();
self.icon.draw();
self.title.draw();
}
pub fn appendItem(self: *Column, options: Item.Options) !void {
const item = try self.items.addOne();
item.* = Item.init(self.items.allocator, options);
self.refresh(false);
}
pub fn insertItem(self: *Column, idx: usize, options: Item.Options) !void {
const items = try self.items.addManyAt(idx, 1);
items[0] = Item.init(self.items.allocator, options);
self.refresh(false);
}
pub fn removeItem(self: *Column, idx: usize) void {
_ = try self.items.orderedRemove(idx);
self.refresh(false);
}
fn update(self: *Column) void {
const up = raylib.IsKeyPressed(raylib.KEY_UP) or raylib.IsKeyPressedRepeat(raylib.KEY_UP);
const down = raylib.IsKeyPressed(raylib.KEY_DOWN) or raylib.IsKeyPressedRepeat(raylib.KEY_DOWN);
if (up and self.selected > 0) self.selected -= 1;
if (down and self.selected < self.items.items.len - 1) self.selected += 1;
if (up or down) self.refresh(true);
}
fn refresh(self: *Column, comptime animate: bool) void {
var y = scales.column_item_before_start - (scales.icon_height + scales.column_item_spacing) * @as(f32, @floatFromInt(self.selected));
for (self.items.items[0..self.selected]) |*item| {
item.position.set(animate, .{ .x = scales.column_position_center.x, .y = y });
item.icon_scale.set(animate, 1.0);
y += scales.icon_height + scales.column_item_spacing;
}
y = scales.column_item_after_start;
for (self.items.items[self.selected..], self.selected..) |*item, i| {
const icon_scale = if (i == self.selected) scales.column_selected_item_icon_scale else 1.0;
item.position.set(animate, .{ .x = scales.column_position_center.x, .y = y });
item.icon_scale.set(animate, icon_scale);
y += scales.icon_height * icon_scale + scales.column_item_spacing + (std.math.pow(f32, 4.0, icon_scale) - 4.0);
}
}
};
// TODO animated text fade in/out
pub const Item = struct {
position: Tweener(raylib.Vector2, .{}) = .{},
icon_scale: Tweener(f32, 1.0) = .{},
icon: Image,
title: Text,
subtitle: Text,
pub const Options = struct {
icon: raylib.Texture2D,
title: []const u8,
subtitle: []const u8,
};
pub fn init(_: Allocator, options: Options) Item {
raylib.SetTextureFilter(options.icon, raylib.TEXTURE_FILTER_BILINEAR);
raylib.SetTextureWrap(options.icon, raylib.TEXTURE_WRAP_CLAMP);
return .{
.icon = .{ .texture = options.icon },
.title = .{
.string = options.title,
.align_v = .right,
},
.subtitle = .{
.string = options.subtitle,
.align_v = .left,
},
};
}
pub fn draw(self: *Item) void {
const position = self.position.update();
const icon_scale = self.icon_scale.update();
self.icon.box = .{
.x = position.x - scales.icon_width / 2.0 * (icon_scale - 1),
.y = position.y,
.w = scales.icon_width * icon_scale,
.h = scales.icon_height * icon_scale,
};
self.title.font_size = scales.item_title_font_size;
self.title.box = .{
.x = self.icon.box.x + 8 + self.icon.box.w,
.y = self.icon.box.y,
.w = 300,
.h = self.icon.box.h / 2.0 - 2,
};
self.subtitle.font_size = scales.item_subtitle_font_size;
self.subtitle.box = .{
.x = self.icon.box.x + 8 + self.icon.box.w,
.y = self.icon.box.y + self.icon.box.h / 2.0 + 1,
.w = 200,
.h = self.icon.box.h / 2.0 - 2,
};
self.icon.draw();
self.title.draw();
self.subtitle.draw();
}
};
pub fn Tweener(comptime T: type, comptime default: T) type {
return struct {
time: f32 = 0.0,
length: f32 = 0.333,
start: T = default,
target: T = default,
current: T = default,
fn set(self: *Self, comptime animate: bool, value: T) void {
if (animate) {
self.time = 0;
self.start = self.current;
self.target = value;
} else {
self.start = value;
self.target = value;
self.current = value;
}
}
fn update(self: *Self) T {
self.time += raylib.GetFrameTime();
self.current = switch (T) {
f32 => std.math.lerp(self.start, self.target, self.easeOutExpo()),
raylib.Vector2 => raylib.Vector2Lerp(self.start, self.target, self.easeOutExpo()),
else => @compileError("no lerp function for type " ++ @typeName(T)),
};
return self.current;
}
fn easeOutExpo(self: Self) f32 {
return 1.0 - std.math.pow(f32, 2, -10 * std.math.clamp(self.time / self.length, 0.0, 1.0));
}
const Self = @This();
};
}
/// Optimized datetime that only pulls from the system clock every few seconds.
pub const DateTime = struct {
refresh_timer: f32 = 0.0,
secs: u64,
pub fn update(self: *DateTime) void {
self.refresh_timer += raylib.GetFrameTime();
if (self.refresh_timer >= 5) {
self.refresh_timer = 0;
self.secs = @intCast(std.time.timestamp());
}
}
pub fn getEpochSeconds(self: DateTime) std.time.epoch.EpochSeconds {
const secs = self.secs + @as(u64, @intFromFloat(self.refresh_timer));
return .{ .secs = secs };
}
pub fn getDaySeconds(self: DateTime) std.time.epoch.DaySeconds {
return self.getEpochSeconds().getDaySeconds();
}
pub fn getEpochDay(self: DateTime) std.time.epoch.EpochDay {
return self.getEpochSeconds().getEpochDay();
}
};
/// Draws the dynamic gradient background.
// TODO subdivided plane gradient
// TODO smoothly transition between gradients over a couple seconds
// TODO image wallpaper
// TODO slideshow wallpaper
// TODO animated image wallpaper
pub const Background = struct {
top_left: Color,
top_right: Color,
bottom_right: Color,
bottom_left: Color,
pub fn init() Background {
var self: Background = undefined;
self.update();
return self;
}
pub fn update(self: *Background) void {
const epoch_day = datetime.getEpochDay();
const year_day = epoch_day.calculateYearDay();
const month_day = year_day.calculateMonthDay();
const day_seconds = datetime.getDaySeconds();
const t = @sin(raylib.Remap(
@floatFromInt(day_seconds.secs),
0,
std.time.s_per_day / 2,
0,
std.math.pi,
));
self.setColors(switch (month_day.month) {
.jun => lerpColors(DAY_06, NIGHT_06, t),
.aug => lerpColors(DAY_08, NIGHT_08, t),
else => @panic("month background colors not implemented"),
});
}
pub fn setColors(self: *Background, colors: [4]Color) void {
self.top_left = colors[0];
self.bottom_right = colors[1];
self.top_right = colors[2];
self.bottom_left = colors[3];
}
pub fn draw(self: *Background) void {
if (debug_draw)
raylib.ClearBackground(raylib.BLACK)
else
raylib.DrawRectangleGradientEx(
.{
.x = 0,
.y = 0,
.width = screen_width,
.height = screen_height,
},
self.top_left.toRaylib(),
self.bottom_left.toRaylib(),
self.top_right.toRaylib(),
self.bottom_right.toRaylib(),
);
}
pub const Color = struct {
r: f32,
g: f32,
b: f32,
fn toRaylib(self: Color) raylib.Color {
return .{
.r = @intFromFloat(std.math.clamp(self.r, 0.0, 1.0) * 255.0),
.g = @intFromFloat(std.math.clamp(self.g, 0.0, 1.0) * 255.0),
.b = @intFromFloat(std.math.clamp(self.b, 0.0, 1.0) * 255.0),
.a = 255,
};
}
fn lerp(self: Color, other: Color, t: f32) Color {
return .{
.r = std.math.lerp(self.r, other.r, t),
.g = std.math.lerp(self.g, other.g, t),
.b = std.math.lerp(self.b, other.b, t),
};
}
};
fn lerpColors(a: [4]Color, b: [4]Color, t: f32) [4]Color {
var colors = a;
for (&colors, a, b) |*color, aa, bb| color.* = aa.lerp(bb, t);
return colors;
}
pub const DAY_06 = [4]Color{
.{ .r = 0.408, .g = 0.333, .b = 0.643 },
.{ .r = 0.518, .g = 0.365, .b = 0.855 },
.{ .r = 0.761, .g = 0.510, .b = 0.851 },
.{ .r = 0.569, .g = 0.325, .b = 0.620 },
};
pub const NIGHT_06 = [4]Color{
.{ .r = 0.039, .g = 0.031, .b = 0.035 },
.{ .r = 0.031, .g = 0.039, .b = 0.035 },
.{ .r = 0.824, .g = 0.647, .b = 0.878 },
.{ .r = 0.784, .g = 0.608, .b = 0.831 },
};
pub const DAY_08 = [4]Color{
.{ .r = 0.243, .g = 0.608, .b = 0.831 },
.{ .r = 0.039, .g = 0.690, .b = 0.878 },
.{ .r = 0.016, .g = 0.306, .b = 0.694 },
.{ .r = 0.000, .g = 0.027, .b = 0.310 },
};
pub const NIGHT_08 = [4]Color{
.{ .r = 0.000, .g = 0.145, .b = 0.349 },
.{ .r = 0.000, .g = 0.008, .b = 0.106 },
.{ .r = 0.251, .g = 0.494, .b = 0.576 },
.{ .r = 0.008, .g = 0.537, .b = 0.612 },
};
};
pub const BoundingBox = struct {
x: f32 = 0,
y: f32 = 0,
w: f32,
h: f32,
};
/// A texture within a bounding box. Positions and scales based on configurable parameters.
/// Despite the BoundingBox name, will never crop the texture, even when using `Mode.original`.
pub const Image = struct {
box: BoundingBox = undefined,
texture: raylib.Texture2D,
// normal: ?raylib.Texture2D = null,
is_normal_map: bool = false,
mode: Mode = .fit,
align_h: Align = .center,
align_v: Align = .center,
pub fn draw(self: *Image) void {
const width: f32 = @floatFromInt(self.texture.width);
const height: f32 = @floatFromInt(self.texture.height);
const width_scale: f32 = if (width == 0) 0.0 else self.box.w / width;
const height_scale: f32 = if (height == 0) 0.0 else self.box.h / height;
const scale = switch (self.mode) {
.original => 1.0,
.fit => @min(width_scale, height_scale),
.fill => @max(width_scale, height_scale),
};
const position = raylib.Vector2{
.x = switch (self.align_h) {
.left => 0,
.center => self.box.x + self.box.w / 2.0 - (width * scale) / 2.0,
.right => self.box.x + self.box.w - width * scale,
},
.y = switch (self.align_v) {
.left => 0,
.center => self.box.y + self.box.h / 2.0 - (height * scale) / 2.0,
.right => self.box.y + self.box.h - height * scale,
},
};
if (debug_draw) {
raylib.DrawRectangleLines(
@intFromFloat(self.box.x),
@intFromFloat(self.box.y),
@intFromFloat(self.box.w),
@intFromFloat(self.box.h),
raylib.MAROON,
);
} else {
if (self.is_normal_map) {
raylib.BeginShaderMode(icon_shader);
defer raylib.EndShaderMode();
raylib.DrawTextureEx(self.texture, position, 0, scale, raylib.WHITE);
} else raylib.DrawTextureEx(self.texture, position, 0, scale, raylib.WHITE);
}
}
pub const Mode = enum { original, fit, fill };
pub const Align = enum { left, center, right };
};
/// Draws a string inside a bounding box.
// TODO ellipsize text
// TODO clip text and scroll
pub const Text = struct {
box: BoundingBox = undefined,
string: []const u8,
font_size: f32 = undefined,
font_spacing: f32 = 1,
align_h: Align = .left,
align_v: Align = .left,
pub fn draw(self: *Text) void {
const size = raylib.MeasureTextEx(
global_font,
@ptrCast(self.string),
self.font_size,
self.font_spacing,
);
if (debug_draw)
raylib.DrawRectangleLines(
@intFromFloat(self.box.x),
@intFromFloat(self.box.y),
@intFromFloat(self.box.w),
@intFromFloat(self.box.h),
raylib.GREEN,
)
else
raylib.DrawTextEx(
global_font,
@ptrCast(self.string),
.{
.x = switch (self.align_h) {
.left => self.box.x,
.center => self.box.x + self.box.w / 2.0 - size.x / 2.0,
.right => self.box.x + self.box.w - size.x,
},
.y = switch (self.align_v) {
.left => self.box.y,
.center => self.box.y + self.box.h / 2.0 - size.y / 2.0,
.right => self.box.y + self.box.h - size.y,
},
},
self.font_size,
self.font_spacing,
raylib.WHITE,
);
}
pub const Align = enum { left, center, right };
};
/// Create ortho camera looking down at the XY plane, with a fovy of 1 for UV-like positioning.
fn createCamera() raylib.Camera3D {
var camera = raylib.Camera3D{};
camera.position.x = 0;
camera.position.y = 10;
camera.position.z = 0;
// camera pointing down, oriented correctly
// TODO this works but looks weird. do better.
camera.target.x = 0;
camera.target.y = 0;
camera.target.z = -0.000000000000001;
camera.up.x = 0;
camera.up.y = 1;
camera.up.z = 0;
camera.fovy = 1;
camera.projection = raylib.CAMERA_ORTHOGRAPHIC;
return camera;
}
// Based on parts of code from the MIT-licensed Godot Engine.
// https://github.com/godotengine/godot/blob/34b485d62b0a71e85a56fb46cf7ecc59963ed2d6/scene/resources/curve.cpp
//
// Copyright (c) 2014-present Godot Engine contributors.
// Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// -- Godot Engine <https://godotengine.org>
pub const Curve = struct {
points: []const Point,
pub fn sample(self: *Curve, x: f32) f32 {
if (self.points.len == 0) return 0;
if (self.points.len == 1) return self.points[0].y;
const i = self.getIndex(x);
if (i == self.points.len - 1) return self.points[i].y;
var local = x - self.points[i].x;
if (i == 0 and local <= 0) return self.points[0].y;
const a = self.points[i];
const b = self.points[i + 1];
var d = b.x - a.x;
if (std.math.approxEqRel(f32, 0, d, @sqrt(std.math.floatEps(f32))))
return b.y;
local /= d;
d /= 3.0;
const yac = a.y + d * a.right_tangent;
const ybc = b.y - d * b.left_tangent;
return bezierInterpolate(a.y, yac, ybc, b.y, local);
}
fn getIndex(self: *Curve, x: f32) usize {
var imin: usize = 0;
var imax = self.points.len - 1;
while (imax - imin > 1) {
const m = (imin + imax) / 2;
const a = self.points[m].x;
const b = self.points[m + 1].x;
if (a < x and b < x)
imin = m
else if (a > x)
imax = m
else
return m;
}
if (x > self.points[imax].x) return imax;
return imin;
}
fn bezierInterpolate(start: f32, control1: f32, control2: f32, end: f32, t: f32) f32 {
const omt = 1.0 - t;
const omt2 = omt * omt;
const omt3 = omt2 * omt;
const t2 = t * t;
const t3 = t2 * t;
return start * omt3 + control1 * omt2 * t * 3.0 + control2 * omt * t2 * 3.0 + end * t3;
}
// TODO use this
fn updateAutoTangents(self: *Curve, idx: usize) void {
var p = &self.points[idx];
if (idx > 0) {
if (p.left_mode == .linear) {
const v = raylib.Vector2Normalize(.{
.x = self.points[idx - 1].x - p.x,
.y = self.points[idx - 1].y - p.y,
});
p.left_tangent = v.y / v.x;
}
if (self.points[idx - 1].right_mode == .linear) {
const v = raylib.Vector2Normalize(.{
.x = self.points[idx - 1].x - p.x,
.y = self.points[idx - 1].y - p.y,
});
self.points[idx - 1].right_tangent = v.y / v.x;
}
}
if (idx + 1 < self.points.len) {
if (p.right_mode == .linear) {
const v = raylib.Vector2Normalize(.{
.x = self.points[idx + 1].x - p.x,
.y = self.points[idx + 1].y - p.y,
});
p.right_tangent = v.y / v.x;
}
if (self.points[idx + 1].left_mode == .linear) {
const v = raylib.Vector2Normalize(.{
.x = self.points[idx + 1].x - p.x,
.y = self.points[idx + 1].y - p.y,
});
self.points[idx + 1].right_tangent = v.y / v.x;
}
}
}
pub const Point = struct {
x: f32,
y: f32,
left_tangent: f32 = 0.0,
right_tangent: f32 = 0.0,
left_mode: TangentMode = .free,
right_mode: TangentMode = .free,
pub const TangentMode = enum { free, linear };
};
};
const std = @import("std");
const Allocator = std.mem.Allocator;
const c = @import("c.zig");
const raylib = c.raylib;