const std = @import("std"); pub fn main() !void { var gpa = std.heap.GeneralPurposeAllocator(.{}){}; defer _ = gpa.deinit(); const allocator = gpa.allocator(); // var input = Signal{ .digital = 1, .analog = 0.5 }; var circuit = Circuit.init(allocator); defer circuit.deinit(); // var not1 = try circuit.addComponent(Not); // not1.invert_output = false; // not1.component.inputs.items[0] = .{ .signal = &input }; // manually set the input here // var battery1 = try circuit.addComponent(Battery); var battery1 = try Battery.init(allocator); defer battery1.deinit(allocator); try circuit.components.append(circuit.allocator, battery1.component); battery1.component = circuit.components.items[0]; try circuit.source_components.append(circuit.allocator, &battery1.component); // std.debug.print("{any}\n\n", .{circuit.components.items}); // std.debug.print("{any}\n\n", .{circuit.source_components.items}); std.debug.print("{*} == {*}\n\n", .{ &circuit.components.items[0], circuit.source_components.items[0] }); // var battery2 = try circuit.addComponent(Battery); // var battery3 = try circuit.addComponent(Battery); // battery1.value = -0.5; // battery2.value = 0.5; // battery3.value = -1.0; // var or1 = try circuit.addComponent(Or); // var or2 = try circuit.addComponent(Or); // or1.arithmetic_mode = true; // or2.arithmetic_mode = true; // try or1.component.setNumInputs(allocator, 3); // try or2.component.setNumInputs(allocator, 3); // var or3 = try circuit.addComponent(Or); // var or4 = try circuit.addComponent(Or); // var or5 = try circuit.addComponent(Or); // var or6 = try circuit.addComponent(Or); // var or7 = try circuit.addComponent(Or); // var or8 = try circuit.addComponent(Or); // var and1 = try circuit.addComponent(And); // var and2 = try circuit.addComponent(And); // or6.arithmetic_mode = true; // or7.arithmetic_mode = true; // or8.arithmetic_mode = true; // and1.arithmetic_mode = true; // and2.arithmetic_mode = true; // battery1.component.connect(0, &or3.component, 1); // battery1.component.connect(0, &or4.component, 1); // battery1.component.connect(0, &or5.component, 1); // battery2.component.connect(0, &or6.component, 0); // battery2.component.connect(0, &or7.component, 0); // battery2.component.connect(0, &or8.component, 0); // battery3.component.connect(0, &and1.component, 0); // battery3.component.connect(0, &and2.component, 0); // not1.component.connect(0, &or3.component, 0); // not1.component.connect(0, &or1.component, 0); // not1.component.connect(0, &or1.component, 1); // or1.component.connect(0, &or4.component, 0); // or1.component.connect(0, &or2.component, 0); // or1.component.connect(0, &or2.component, 1); // or2.component.connect(0, &or5.component, 0); // or3.component.connect(0, &or6.component, 1); // or4.component.connect(0, &or7.component, 1); // or5.component.connect(0, &or8.component, 1); // or6.component.connect(0, &and1.component, 1); // and1.component.connect(0, &or1.component, 2); // or7.component.connect(0, &and2.component, 1); // and2.component.connect(0, &or2.component, 2); try circuit.tick(); // battery1.component.process(); // battery2.component.process(); // battery3.component.process(); // not1.component.process(); // or3.component.process(); // or6.component.process(); // and1.component.process(); // or1.component.process(); // or4.component.process(); // or7.component.process(); // and2.component.process(); // or2.component.process(); // or5.component.process(); // or8.component.process(); // std.debug.print("Input:\n{}\n\n", .{input}); // std.debug.print("{}\n{}\n\n", .{ // or1.component.outputs.items[0].signal, // or2.component.outputs.items[0].signal, // }); // std.debug.print("{}\n{}\n{}\n\n", .{ // or3.component.outputs.items[0].signal, // or4.component.outputs.items[0].signal, // or5.component.outputs.items[0].signal, // }); // std.debug.print("{}\n{}\n{}\n{}\n{}\n\n", .{ // or6.component.outputs.items[0].signal, // and1.component.outputs.items[0].signal, // or7.component.outputs.items[0].signal, // and2.component.outputs.items[0].signal, // or8.component.outputs.items[0].signal, // }); } pub const Circuit = struct { allocator: std.mem.Allocator, components: Components, source_components: SourceComponents, pub fn init(allocator: std.mem.Allocator) Circuit { return .{ .allocator = allocator, .components = Components.empty, .source_components = SourceComponents.empty, }; } pub fn deinit(self: *Circuit) void { self.source_components.deinit(self.allocator); for (0..self.components.items.len) |i| self.components.items[i].deinit(self.allocator); self.components.deinit(self.allocator); } // pub fn addComponent(self: *Circuit, comptime T: type) !T { // var c = try T.init(self.allocator); // errdefer c.deinit(self.allocator); // try self.components.append(self.allocator, c.component); // // if (T == Battery) try self.source_components.append(self.allocator, &c.component); // return c; // } pub fn tick(self: *Circuit) !void { var process_order_solver = try ProcessOrderSolver.init(self); defer process_order_solver.deinit(); const process_order = process_order_solver.solve(); _ = process_order; } const Components = std.ArrayListUnmanaged(Component); const SourceComponents = std.ArrayListUnmanaged(*Component); const ProcessOrder = []*Component; const ProcessOrderSolver = struct { circuit: *Circuit, solved: []bool, pub fn init(circuit: *Circuit) !ProcessOrderSolver { return .{ .circuit = circuit, .solved = try circuit.allocator.alloc(bool, circuit.components.items.len), }; } pub fn deinit(self: *ProcessOrderSolver) void { self.circuit.allocator.free(self.solved); } pub fn solve(self: *ProcessOrderSolver) ProcessOrder { // std.debug.print("{any}\n\n", .{self.circuit.source_components.items}); for (self.circuit.source_components.items) |source_component| { var component = source_component; // while (true) blk: { // component.process(); // std.debug.print("source component {any}\n\n", .{source_component}); const idx = self.componentIndex(component); self.solved[idx.?] = true; component = component.outputs.items[0].connection.?; std.debug.print("{any}\n", .{component}); // } } return &[_]*Component{}; } fn componentIndex(self: ProcessOrderSolver, component: *Component) ?usize { for (self.circuit.components.items, 0..) |c, i| { // std.debug.print("{any} == {any}\n", .{ component, &c }); std.debug.print("{*} == {*}\n", .{ component, &c }); // std.debug.print("{s}\n{s}\n{any}\n\n", .{ // std.fmt.fmtSliceHexLower(std.mem.asBytes(component)), // std.fmt.fmtSliceHexLower(std.mem.asBytes(&c)), // std.mem.eql(u8, std.mem.asBytes(component), std.mem.asBytes(&c)), // }); // if (std.mem.eql(u8, std.mem.asBytes(component), std.mem.asBytes(&c))) { if (component == &c) { // std.debug.print("component index {d}\n", .{i}); return i; } } return null; // return std.mem.indexOfScalar(Component, self.circuit.components.items, component.*); } }; }; var null_signal = Signal{}; pub const Component = struct { inputs: Inputs, outputs: Outputs, processFn: *const fn (*Component) void, pub fn init(allocator: std.mem.Allocator, inputs_len: usize, outputs_len: usize, processFn: *const fn (*Component) void) !Component { var inputs = Inputs.empty; errdefer inputs.deinit(allocator); try inputs.resize(allocator, inputs_len); for (0..inputs.items.len) |i| inputs.items[i] = .{}; var outputs = Outputs.empty; errdefer outputs.deinit(allocator); try outputs.resize(allocator, outputs_len); for (0..outputs.items.len) |i| outputs.items[i] = .{}; return .{ .inputs = inputs, .outputs = outputs, .processFn = processFn, }; } pub fn deinit(self: *Component, allocator: std.mem.Allocator) void { self.inputs.deinit(allocator); self.outputs.deinit(allocator); } pub fn process(self: *Component) void { self.processFn(self); } // TODO allow inserting the new elements at an arbitrary index // TODO ensure this won't break the opposide side's connections pub fn setNumInputs(self: *Component, allocator: std.mem.Allocator, new_len: usize) !void { const old_len = self.inputs.items.len; try self.inputs.resize(allocator, new_len); if (new_len > old_len) for (old_len..new_len) |i| { self.inputs.items[i] = .{}; }; } // TODO allow inserting the new elements at an arbitrary index // TODO is this allocating the new output Signals on the stack or dumbthing? // TODO ensure this won't break the opposide side's connections pub fn setNumOutputs(self: *Component, allocator: std.mem.Allocator, new_len: usize) !void { const old_len = self.outputs.items.len; try self.outputs.resize(allocator, new_len); if (new_len > old_len) for (old_len..new_len) |i| { self.outputs.items[i] = .{}; }; } pub fn connect(self: *Component, self_idx: usize, to: *Component, to_idx: usize) void { to.inputs.items[to_idx] = .{ .signal = &self.outputs.items[self_idx].signal, .connection = self, .idx = self_idx, }; } pub const Input = struct { signal: *Signal = &null_signal, connection: ?*Component = null, idx: usize = 0, }; pub const Output = struct { signal: Signal = .{}, connection: ?*Component = null, idx: usize = 0, }; const Inputs = std.ArrayListUnmanaged(Input); const Outputs = std.ArrayListUnmanaged(Output); }; pub const Signal = struct { digital: i2 = 0, analog: f32 = 0.0, color: u24 = 0, pub fn format( self: Signal, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = .{ fmt, options }; try writer.writeAll("Signal("); if (self.digital < 0) try writer.writeByte('-') else try writer.writeByte('+'); try writer.print("{d} / {d:0>1.4})", .{ @abs(self.digital), self.analog, }); } }; pub const Battery = struct { component: Component, value: f32 = 1.0, pub fn init(allocator: std.mem.Allocator) !Battery { return .{ .component = try Component.init(allocator, 0, 1, &process), }; } pub fn deinit(self: *Battery, allocator: std.mem.Allocator) void { self.component.deinit(allocator); } pub fn process(component: *Component) void { const self: *Battery = @fieldParentPtr("component", component); component.outputs.items[0].signal.digital = @intFromFloat(std.math.sign(self.value)); component.outputs.items[0].signal.analog = self.value; } }; pub const Not = struct { component: Component, invert_output: bool = true, pub fn init(allocator: std.mem.Allocator) !Not { return .{ .component = try Component.init(allocator, 1, 1, &process), }; } pub fn deinit(self: *Not, allocator: std.mem.Allocator) void { self.component.deinit(allocator); } pub fn process(component: *Component) void { const self: *Not = @fieldParentPtr("component", component); if (self.invert_output) { component.outputs.items[0].signal.digital = 1 - @as(i2, @intCast(@abs(component.inputs.items[0].signal.digital))); component.outputs.items[0].signal.analog = 1.0 - @abs(component.inputs.items[0].signal.analog); } else { component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital; component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog; } component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0); } }; pub const And = struct { component: Component, // if false, is in Minimum Input mode // if true, is in Multiply Inputs mode arithmetic_mode: bool = false, pub fn init(allocator: std.mem.Allocator) !And { return .{ .component = try Component.init(allocator, 2, 1, &process), }; } pub fn deinit(self: *And, allocator: std.mem.Allocator) void { self.component.deinit(allocator); } // TODO check implementation pub fn process(component: *Component) void { const self: *And = @fieldParentPtr("component", component); if (self.arithmetic_mode) { component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital; component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog; for (component.inputs.items[1..]) |input| { component.outputs.items[0].signal.digital = 0; // TODO component.outputs.items[0].signal.analog *= input.signal.analog; } } else { component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital; component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog; for (component.inputs.items[1..]) |input| { component.outputs.items[0].signal.digital = 0; // TODO component.outputs.items[0].signal.analog = switch (std.math.order(@abs(component.outputs.items[0].signal.analog), @abs(input.signal.analog))) { .lt => component.outputs.items[0].signal.analog, .eq => @min(component.outputs.items[0].signal.analog, input.signal.analog), // TODO what does this *actually* do? .gt => input.signal.analog, }; } } component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0); } }; // TODO update test to use new Component interface test "min" { var a = Signal{ .analog = 0.0 }; var b = Signal{ .analog = 1.0 }; var inputs = [_]*Signal{ &a, &b }; var and1 = And{ .inputs = &inputs }; and1.process(); try std.testing.expectEqual(0.0, and1.output.analog); a.analog = -0.5; b.analog = -0.2; and1.process(); try std.testing.expectEqual(-0.2, and1.output.analog); } pub const Or = struct { component: Component, // if false, is in Maximum Input mode // if true, is in Add Inputs mode arithmetic_mode: bool = false, pub fn init(allocator: std.mem.Allocator) !Or { return .{ .component = try Component.init(allocator, 2, 1, &process), }; } pub fn deinit(self: *Or, allocator: std.mem.Allocator) void { self.component.deinit(allocator); } // TODO check implementation pub fn process(component: *Component) void { const self: *Or = @fieldParentPtr("component", component); if (self.arithmetic_mode) { component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital; component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog; for (component.inputs.items[1..]) |input| { component.outputs.items[0].signal.digital = 0; // TODO component.outputs.items[0].signal.analog += input.signal.analog; } } else { component.outputs.items[0].signal.digital = component.inputs.items[0].signal.digital; component.outputs.items[0].signal.analog = component.inputs.items[0].signal.analog; for (component.inputs.items[1..]) |input| { component.outputs.items[0].signal.digital = 0; // TODO component.outputs.items[0].signal.analog = switch (std.math.order(@abs(component.outputs.items[0].signal.analog), @abs(input.signal.analog))) { .lt => input.signal.analog, .eq => @max(component.outputs.items[0].signal.analog, input.signal.analog), // TODO what does this *actually* do? .gt => component.outputs.items[0].signal.analog, }; } } component.outputs.items[0].signal.analog = std.math.clamp(component.outputs.items[0].signal.analog, -1.0, 1.0); } }; // TODO update test to use new Component interface test "max" { var a = Signal{ .analog = 0.0 }; var b = Signal{ .analog = 1.0 }; var inputs = [_]*Signal{ &a, &b }; var or1 = Or{ .inputs = &inputs }; or1.process(); try std.testing.expectEqual(1.0, or1.output.analog); a.analog = -0.5; b.analog = -0.2; or1.process(); try std.testing.expectEqual(-0.5, or1.output.analog); }